2–5 Jul 2024
Osijek
Europe/Zagreb timezone

Stable convergence in law for some stochastic integrals

Not scheduled
20m
Osijek

Osijek

School of Applied Mathematics and Informatics, J. J. Strossmayer University of Osijek, Trg Ljudevita Gaja 6, Osijek Faculty of Economics, J. J. Strossmayer University of Osijek , Trg Ljudevita Gaja 7, Osijek
Poster PSF: Probability, Statistics and Financial Mathematics

Speaker

Snježana Lubura Strunjak (University of Zagreb, Faculty of Science)

Description

We assume that the one-dimensional diffusion $X$ satisfies a stochastic differential equation of the form:
$dX_t=\mu(X_t)dt+\nu(X_t)dW_t$, $X_0=x_0$, $t\geq 0$.
Let $(X_{i\Delta_n},0\leq i\leq n)$ be discrete observations along fixed time interval $[0,T]$. We prove that the random vectors which $j$-th component is $\frac{1}{\sqrt{\Delta_n}}\sum_{i=1}^n\int_{t_{i-1}}^{t_i}g_j(X_s)(f_j(X_s)-f_j(X_{t_{i-1}}))dW_s$, for $j=1,\dots,d$, converge stably in law to mixed normal random vector with covariance matrix which depends on path $(X_t,0\leq t\leq T)$, when $n\to\infty$. We use this result to prove stable convergence in law for $\frac{1}{\sqrt{\Delta_n}}(\int_0^Tf(X_s)dX_s-\sum_{i=1}^nf(X_{t_{i-1}})(X_{t_i}-X_{t_{i-1}}))$.

Primary author

Snježana Lubura Strunjak (University of Zagreb, Faculty of Science)

Presentation materials

There are no materials yet.