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Quaternions
Quaternions are a non-commutative associative number system that extends complex numbers, introduced by Hamilton ( 1853, 1866). For

basic quaternions , , and , the quaternions have the form

The multiplication table of basic quaternions is the following:

Conjugation is given by

Then,

Let  be a complex analytic function. The value , where , is computed by evaluating the extension of  to the quaternions at

, see (Sudbery,1979), for example,

Basic operations with quaternions and computation of the functions of quaternions are implemented in the package Quaternions.jl.

https://openlibrary.org/books/OL23416635M/Lectures_on_quaternions
https://openlibrary.org/books/OL23416635M/Lectures_on_quaternions
https://openlibrary.org/books/OL7211578M/Elements_of_quaternions.
https://openlibrary.org/books/OL7211578M/Elements_of_quaternions.
https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/quaternionic-analysis/308CF454034EC347D4D17D1F829F8471
https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/quaternionic-analysis/308CF454034EC347D4D17D1F829F8471
https://github.com/JuliaGeometry/Quaternions.jl
https://github.com/JuliaGeometry/Quaternions.jl


Standard form
Quaternions  and  are similar if

This is i�f

The standard form of the quaternion  is the (unique) similar quaternion :

where  is computed as follows:

if , then ,

if , then , ortherwise,

if , then , where .



Homomorphism
Quaternions are homomorphic to :

with eigenvalues  and . It holds



Matrices
Arrowhead matrix (Arrow) is a matrix of the form

where

or any symmetric permutation of such a matrix.

Diagonal-plus-rank-one matrix (DPR1) is a matrix of the form

where



Matrix × vector
Products

are computed in  operations.

Let . Then

Let  and let . Then



Inverses (Arrowhead)
Inverses are computed in  operations.

Let  be nonsingular.

Let  be the permutation matrix of the permutation .

If all , the inverse of  is a DPRk (DPR1) matrix

where



Inverses (Arrowhead, cont.)
If , the inverse of  is an Arrow with the tip of the arrow at position  and zero at position  (the tip and the zero on the sha�t

change places). Let  be the permutation matrix of the permutation . Partition ,  and 

as

Then

where



Inverses (DPRk)
Let  be nonsingular.

If all , the inverse of  is a DPRk matrix

where



Inverses (DPRk, cont.)
If  and , the inverse of  is an arrowhead matrix with the tip of the arrow at position . In particular, let  be the

permutation matrix of the permutation . Partition ,  and  as

Then,

where



Eigenvalue decomposition
Right eigenpairs  satisfy

Usually,  is chosen such that  is the standard form.

Eigenvalues are invariant under similarity.

Eigenvalues are NOT shi�t invariant, that is, eigenvalues of the shi�ted matrix are NOT the shi�ted eigenvalues. (In general,

)

If  is in the standard form, it is invariant under similarity with complex numbers.



A Quaternion Q� algorithm
by Angelika Bunse-Gerstner, Ralph Byers, and Volker Mehrmann, Numer. Math 55, 83-95 (1989)

Given , the algorithm has four steps, as usual:

�. Reduce  to Hessenberg form by Householder re�lectors:

where  is unitary and  is an upper Hessenberg matrix.

�. Compute the Schur decomposition of ,

where  is unitary and  is upper triangular with eigenvalues of  on the diagonal.

�. Compute the eigenvectors  of  by solving the Sylvester equation:

Then .

�. Multiply

Then  is the eigenvalue decomposition of .

The algorithm is derived for general matrices and requires  operations. The algorithm is stable and we use it for comparison.



Computing the Schur decomposition
Given the upper Hessenberg matrix , the method applies complex shi�t  to  by using Francis standard double shi�t on the

matrix

and applying it implicitly on .

If , then

For the perfect shi�t, , it holds

Details are given in Algorithm 4 in the Appendix of [BGBM89].



�QI with double shi�s
We can apply the double shi�t  and  similarly as in the [BGGM89 ] method.

The Rayleigh Quotient Iteration with Double Shi�ts (RQIds) produces sequences of shi�ts and vectors

Due to the arrowhead or DPRk structure of , one step of the method requires  operations:

Here  is the solution of the system



�QIds for Arrowhead
Let

Notice that  and  are real. Then:

Therefore,

so



�QIds for Arrowhed (cont.)
The matrix  is a DPRk (DPR1) matrix,

Multiplying of (1) by the block matrix  from the le�t yields

where  is an arrowhead matrix. Finally, , where .

Due to the fast multiplication and computation of inverses, one step requires  operations.



Wielandt's de�ation

• Let  be a (real, complex, or quaternionic) matrix.

• Let  be a right eigenpair of .

• Choose  such that , say .

• Compute the de�lated matrix .

• Then  is an eigenpair of .

• Further, if  is an eigenpair of , then , where  is an eigenpair of .

Proofs: Using  and , the �rst statement holds since

Further,



De�ation for Arrowhead
Lemma 1. Let  be an arrowhead matrix partitioned as

where ,  and  are scalars,  and  are vectors, and  is a diagonal matrix.

Let , where  and  are scalars, and  is a vector, be an eigenpair of . Then,

and  is an arrowhead matrix



De�ation for Arrowhead (cont.)

Lemma 2. Let  and  be as in Lemma 1. If  is an eigenpair of , then the eigenpair of  is

where  is the solution of the scalar Sylvester equation



Computing the eigenvectors

Let  be an eigenpair of the matrix , that is

If  and  are known, then the other components of the eigenvector are solutions of scalar Sylvester equations

By setting

the Sylvester equation (3) becomes

Dividing (4) by  from the right gives



Algorithm
In the �rst (forward) pass, in each step the absolutely largest eigenvalue and its eigenvector are computed by the RQIds. The �rst element

of the current vector  and the �rst and the last elements of the current eigenvector are stored. The current value  is computed using (6)

and stored. The de�lation is then performed according to Lemma 1.

The eigenvectors are reconstructed bottom-up, that is from the smallest matrix to the original one (a backward pass). In each iteration, we

need access to:

• the �rst element of the vector  which was used to de�ne the current Arrow matrix,

• its absolutely largest eigenvalue, and

• the �rst and the last elements of the corresponding eigenvector.

In the th step, for each  the following steps are performed:

�. The equation (5) is solved for  (the �rst element of the eigenvector of the larger matrix). The quantity  is the last element of the

eigenvectors and was stored in the forward pass.

�. The �rst element of the eigenvector of super-matrix is updated (set to ).

�. The last element of the eigenvectors of the super-matrix is updated using (2).

Iterations are completed in  operations.

A�ter all iterations are completed, we have:

• the computed eigenvalue and its eigenvector (unchanged from the �rst run of the RQIds),

• all other eigenvalues and the last elements of their corresponding eigenvectors.

The rest of the elements of the remaining eigenvectors are computed using the procedure described above. This step also requires 

operations.



Corrections
Due to �loating-point error in operations with Quaternions, the computed eigenpairs have larger residuals than required. This is

successfully remedied by running a few steps of the RQIds, starting from the computed eigenvectors. This has the e�fect of using nearly

perfect shi�ts, so typically just a few additional iterations are needed to attain the desired accuracy. This step also requires 

operations.



Pseudocode
Computing all eigenpairs of an Arrow matrix

Require: an Arrow matrix 

 Compute and store the �rst eigenpair  using RQIds

 Compute the de�lated matrix  according to Lemma 1

 Compute 

 Compute and store  according to Lemma 1

for do

 Compute 

 Compute  from (0): 

 Compute the new matrix  from (1)

 Compute and store an eigenpair  of  using RQIds

 Update and store  according to Lemma 1

end for

 Compute and store the last eigenvalue

for do

for do

 Solve the Sylvester equation  for 

 Update  and , the �rst and the last element of the eigenvector of the super-matrix, respectively:

end for

end for

 Reconstruct all eigenvectors from the computed eigenvalues and respective �rst and last elements using (4)

 Correct the computed eigenpairs by running few steps of RQIds with nearly perfect shi�ts.



DPRk matrices
For DPRk matrices there are analogous results:

• RQIds for DPRk (multiplying by one DPRk matrix ad solving the system with another DPRk matrix with  on the diagonal) - 

• De�lation for DPRk - 

• Computing the eigenvectors of a DPRk - 

• Algorithm for DPRk - 



Perturbation theory
We have the following Bauer-Fike type theorem from Sk. Sa�que Ahmad, Istkhar Ali, and Ivan Slapničar,

Perturbation analysis of matrices over a quaternion division algebra, ETNA, Volume 54, pp. 128-149, 2021.

Theorem 1 Let  be a diagonalizable matrix, with , where  is invertible and 

with  being the standard right eigenvalues of . If  is a standard right eigenvalue of , then

Moreover, we have

where  and  is the condition number with respect to the matrix -norm.



Residual bounds
Theorem 2 Let  be the approximate eigenpair of the matrix , where . Let

Then,  is the eigenpair of the matrix  and .

Theorem 3 Let , , be approximate eigenpairs of the matrix , where . Set  and

. We assume that eigenvectors are linearly independent. Let

Then, ,  are the eigenpairs of the matrix  and



Error analysis
An error of the product of two quaternions is bounded as follows (see Joldes, M.; Muller, J. M., Algorithms for manipulating quaternions in

�loating-point arithmetic. In IEEE 27th Symposium on Computer Arithmetic (ARITH), Portland, OR, USA, 2020, pp. 48-55)

Lemma 3 Let . Then

Lemma 4 Let , that is,  and , where  for . Let

 and  denote the corresponding vectors of component-wise absolute values. Then

Corollary Let  be matrices of quaternions and , and let  and  denote the corresponding matrices of component-wise

absolute values. Then



Error bounds
For example, let  be the computed eigenpair of the matrix , where  is in the standard form and . Then we can compute

the residual  as in Theorem 2, and Theorem 1 implies that

We can use the bound e�fectively if the matrix is diagonalizable and we can approximate the condition of the eigenvector matrix  by

the condition of the computed eigenvector matrix .

If we computed all eigenvalues and all eigenvectors of a diagonalizable matrix,  and , respectively, then we can

compute the residual  as in Theorem 2. Inserting the bound for  from Theorem 3 into Theorem 1, yields

If the matrix is normal or Hermitian, then , so the bounds are sharper.



Codes and reference
The Julia codes are available at https://github.com/ivanslapnicar/MANAA

Details, including proofs, are in Fast Eigenvalue Decomposition of Arrowhead and Diagonal-Plus-Rank-k Matrices of Quaternions,

Mathematics 2024, 12(9), 1327.

https://github.com/ivanslapnicar/MANAA
https://github.com/ivanslapnicar/MANAA
https://doi.org/10.3390/math12091327
https://doi.org/10.3390/math12091327
https://doi.org/10.3390/math12091327
https://doi.org/10.3390/math12091327


Example �
Error bounds (green squares), residuals, and actual errors (using BigFloat ) computed by RQIds (red dots and diamonds, respectively), and

residuals and actual errors computed by QR (blue dots and diamonds, respectively). The actual errors are not computed for  and

.



Example �
Error bounds (green squares), residuals, and actual errors (using BigFloat ) computed by RQIds (red dots and diamonds, respectively), and

residuals and actual errors computed by QR (blue dots and diamonds, respectively). The actual errors are not computed for  and

.



Iterations and running times
Mean number of iterations per eigenvalue and mean total running times for Arrow and DPRk matrices of orders ,

using RQIds and QR, respectively.

n # iters Arrow RQIds Time RQIds Time QR

10 8 0.00081 0.00079

20 9 0.0026 0.011

40 16 0.014 0.039

100 32 0.17 0.47

n k # iters DPRk RQIds Time RQIds Time QR

10 2 7 0.0018 0.00075

20 2 9 0.0077 0.011

40 3 16 0.031 0.071

100 4 27 0.25 0.85



Conclusions
The key contributions are the following:

• e��cient algorithms for computing eigenvalue decompositions of Arrow and DPRk matrices of quaternions,

• the algorithms require  arithmetic operations,  being the order of the matrix,

• algorithms have proven error bounds,

• the computable residual is a good estimate of actual errors,

• actual errors are even smaller than predicted by the residuals,

• in all experiments errors and residuals are of the order of tolerance from respective algorithms,

• Rayleigh Quotient Iteration with double-shi�ts is e��cient for non-Hermitian matrices,

• RQIds algorithms compare favorably in accuracy and speed to the quaternion QR method for general matrices.



Thank you!


